简介
目录
机器学习是一种自动分析所构建模型的数据分析方法。通过迭代地从数据中不断学习,机器学习可以使计算机找到一些隐含的信息量,而这些信息量是无法明确通过编程得到的。 本书以OpenCV 2.4.9为研究工具,对算法—正态贝叶斯分类器、K近邻算法、支持向量机、决策树、AdaBoost、梯度提升树、随机森林、期望极大值、神经网络,不仅具体分析了它们的原理和实现方法,还进行了详细的源码解析,并且给出了基于OpenCV的程序实现范例,充分体现了理论与实践相结合的特点。
Copyright(C) 人民邮电出版社电子书平台 , All Rights Reserved
京ICP备15015578号-3 | 出版物经营许可证 新出发京批字第直0673号 | 京公网安备110101000001号